Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular Biology of the Cell (4th ed.). Garland sciencehttps://www.ncbi.nlm.nih.gov/books/NBK26829/
Bastings, J., van Eijk, H. M., Olde Damink, S. W., & Rensen, S. S. (2019). d-amino Acids in Health and Disease: A Focus on Cancer. Nutrients, 11(9), 2205. https://doi.org/10.3390/nu11092205
Brooker, R., Widmaier, E., Graham, L., & Stiling, P. (2014). Biology (3rd ed.). McGraw-Hill.
Clancy, S. (2008). Genetic Mutation. Nature Education. https://www.nature.com/scitable/topicpage/genetic-mutation-441/
D'Alessandro, A., Dzieciatkowska, M., Nemkov, T., & Hansen, K. C. (2017). Red blood cell proteomics update: is there more to discover?. Blood transfusion = Trasfusione del sangue, 15(2), 182–187. https://doi.org/10.2450/2017.0293-16
Darwin, C.R. (1871, 1 February). To J.D. Hooker. University of Cambridge. https://www.darwinproject.ac.uk/letter/DCP-LETT-7471.xml
Gish, D. (1976, 1 July). The Origin of Life: Theories on the Origin of Biological Order. Acts & Facts 5 (7). https://www.icr.org/article/life-theories-origin-biological-order/
Helmenstine, A. M. (2019, 9 September). Amino Acid Chirality. ThoughtCo. https://www.thoughtco.com/amino-acid-chirality-4009939
Hutchison, C. A., Peterson, S. N., Gill, S. R., Cline, R. T., White, O., Fraser, C. M., Smith, H. O., & Venter, J. C. (1999). Global transposon mutagenesis and a minimal Mycoplasma genome. Science (New York, N.Y.), 286(5447), 2165–2169. https://doi.org/10.1126/science.286.5447.2165
Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K., & Ghadiri, M. R. (1996). A self-replicating peptide. Nature, 382(6591), 525–528. https://doi.org/10.1038/382525a0
Maury C. (2018). Amyloid and the origin of life: self-replicating catalytic amyloids as prebiotic informational and protometabolic entities. Cellular and molecular life sciences : CMLS, 75(9), 1499–1507. https://doi.org/10.1007/s00018-018-2797-9
Maury, C.P.J., Liljeström, M., & Zhao, F. (2012). Was the first molecular replicator on the primitive Earth an informational amyloid? EGGSVVAAD, a prebiotically plausible peptide, spontaneously forms amyloid assemblies. Journal of Biological Research, 18, 332-335.
Miller S. L. (1953). A Production of Amino Acids under Possible Primitive Earth Conditions. Science (New York, N.Y.), 117(3046), 528–529. https://doi.org/10.1126/science.117.3046.528
National Geographic Society, n.d. Age of the Earth. National Geographic Society. https://www.nationalgeographic.org/topics/resource-library-age-earth/?q=&page=1&per_page=25
Pérez-Villa, A., Pietrucci, F., & Saitta, A. M. (2020). Prebiotic chemistry and origins of life research with atomistic computer simulations. Physics of life reviews, 34-35, 105–135. https://doi.org/10.1016/j.plrev.2018.09.004
Sarfati, J (1998). Origin of life: the polymerization problem. Journal of Creation. https://creation.com/origin-of-life-the-polymerization-problem
Scoville, H. (2018, 30 January). Early Life Theories - Panspermia Theory. ThoughtCo. https://www.thoughtco.com/early-life-theory-of-panspermia-theory-1224530#:~:text=Panspermia%3A%20Seeds%20Everywhere,but%20also%20small%20extremophile%20organisms.
Tiessen, A., Pérez-Rodríguez, P., & Delaye-Arredondo, L. J. (2012). Mathematical modeling and comparison of protein size distribution in different plant, animal, fungal and microbial species reveals a negative correlation between protein size and protein number, thus providing insight into the evolution of proteomes. BMC research notes, 5, 85. https://doi.org/10.1186/1756-0500-5-85
Zimmerman, P. (1971). The Spontaneous Generation of Life. In W. Lammerts (Ed.), Scientific studies in special creation. (pp. 325-326). Presbyterian and Reformed Publishing Company.